Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
BMC Nurs ; 22(1): 166, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-20234053

ABSTRACT

BACKGROUND: With the changes in social and medical environments and people's health needs, the nursing core competency should be updated and developed promptly. This study aimed to explore the core competencies of nurses in Chinese tertiary hospitals under the new health development strategy. METHODS: Descriptive qualitative research was conducted using qualitative content analysis. 20 clinical nurses and nursing managers from 11 different provinces and cities were interviewed via purposive sampling. RESULTS: Data analysis revealed 27 competencies, which were grouped into three major categories according to the onion model. These categories were motivation and traits (responsibility, enterprise, etc.), professional philosophy and values (professionalism, career perception, etc.), and knowledge and skills (clinical nursing competency, leadership and management competency, etc.). CONCLUSION: Based on the onion model, core competencies for nurses in Chinese tertiary hospitals were established, revealing three layers of core competencies and giving a theoretical reference for nursing managers to conduct competency training courses based on the competency levels.

2.
Viruses ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2241292

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein subunit vaccine is one of the mainstream technology platforms for the development of COVID-19 vaccines, and most R&D units use the receptor-binding domain (RBD) or spike (S) protein as the main target antigen. The complexity of vaccine design, sequence, and expression systems makes it urgent to establish common antigen assays to facilitate vaccine development. In this study, we report the development of a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) to determine the antigen content of SARS-CoV-2 protein subunit vaccines based on the United States Pharmacopeia <1220> and ICH (international conference on harmonization) Q14 and Q2 (R2) requirements. A monoclonal antibody (mAb), 20D8, was identified as the detection antibody based on its high RBD binding activity (EC50 = 8.4 ng/mL), broad-spectrum anti-variant neutralizing activity (EC50: 2.7−9.8 ng/mL for pseudovirus and EC50: 9.6−127 ng/mL for authentic virus), good in vivo protection, and a recognized linear RBD epitope (369−379 aa). A porcine anti-RBD polyclonal antibody was selected as the coating antibody. Assay performance met the requirements of the analytical target profile with an accuracy and precision of ≥90% and adequate specificity. Within the specification range of 70−143%, the method capability index was >0.96; the misjudgment probability was <0.39%. The method successfully detected SARS-CoV-2 protein subunit vaccine antigens (RBD or S protein sequences in Alpha, Beta, Gamma, or Delta variants) obtained from five different manufacturers. Thus, we present a new robust, reliable, and general method for measuring the antigenic content of SARS-CoV-2 protein subunit vaccines. In addition to currently marketed and emergency vaccines, it is suitable for vaccines in development containing antigens derived from pre-Omicron mutant strains.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Subunit , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Enzyme-Linked Immunosorbent Assay , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
J Solid State Electrochem ; : 1-11, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2246154

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL-1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL-1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.

4.
Front Vet Sci ; 9: 986619, 2022.
Article in English | MEDLINE | ID: covidwho-2163206

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be transmitted from human to companion animals. The national wide serological surveillance against SARS-CoV-2 was conducted among pet animals, mainly in cats and dogs, 1 year after the first outbreak of COVID-19 in China. All sera were tested for SARS-CoV-2 IgG antibodies using an indirect enzyme linked immunosorbent assay (ELISA) based on the receptor binding domain (RBD) of spike protein. This late survey takes advantage of the short duration of the serological response in these animals to track recent episode of transmission. A total of 20,592 blood samples were obtained from 25 provinces across 7 geographical regions. The overall seroprevalence of SARS-CoV-2 infections in cats was 0.015% (2/13397; 95% confidence intervals (CI): 0.0, 0.1). The virus infections in cats were only detected in Central (Hubei, 0.375%) and Eastern China (Zhejiang, 0.087%) with a seroprevalence estimated at 0.090 and 0.020%, respectively. In dogs, the seroprevalence of SARS-CoV-2 infections was 0.014% (1/7159; 95% CI: 0.0, 0.1) in the entire nation, seropositive samples were limited to Beijing (0.070%) of Northern China with a prevalence of 0.054%. No seropositive cases were discovered in other geographic regions, nor in other companion animals analyzed in this study. These data reveal the circulation of SARS-CoV-2 in companion animals, although transmission of the virus to domestic cats and dogs is low in China, continuous monitoring is helpful for the better understand of the virus transmission status and the effect on animals.

5.
Journal of solid state electrochemistry : current research and development in science and technology ; : 1-11, 2022.
Article in English | EuropePMC | ID: covidwho-2126209

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL−1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL−1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.

6.
Emerg Microbes Infect ; 11(1): 2120-2131, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1967813

ABSTRACT

Spike (S) glycoprotein is the most significant structural protein of SARS-CoV-2 and a key target for neutralizing antibodies. In light of the on-going SARS-CoV-2 pandemic, identification and screening of epitopes of spike glycoproteins will provide vital progress in the development of sensitive and specific diagnostic tools. In the present study, NTD, RBD, and S2 genes were inserted into the pcDNA3.1(+) vector and designed with N-terminal 6× His-tag for fusion expression in HEK293F cells by transient transfection. Six monoclonal antibodies (4G, 9E, 4B, 7D, 8F, and 3D) were prepared using the expressed proteins by cell fusion technique. The characterization of mAbs was performed by indirect -ELISA, western blot, and IFA. We designed 49 overlapping synthesized peptides that cover the extracellular region of S protein in which 6 amino acid residues were offset between adjacent (S1-S49). Peptides S12, S19, and S49 were identified as the immunodominant epitope regions by the mAbs. These regions were further truncated and the peptides S12.2 286TDAVDCALDPLS297, S19.2 464FERDISTEIYQA475, and S49.4 1202ELGKYEQYIKWP1213 were identified as B- cell linear epitopes for the first time. Alanine scans showed that the D467, I468, E471, Q474, and A475 of the epitope S19.2 and K1205, Q1208, and Y1209 of the epitope S49.4 were the core sites involved in the mAbs binding. The multiple sequence alignment analysis showed that these three epitopes were highly conserved among the variants of concern (VOCs) and variants of interest (VOIs). Taken together, the findings provide a potential material for rapid diagnosis methods of COVID-19.


Subject(s)
Epitopes, B-Lymphocyte , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes, B-Lymphocyte/genetics , Humans , Membrane Glycoproteins/genetics , Peptides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
7.
Lett Appl Microbiol ; 74(6): 1001-1007, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1891648

ABSTRACT

African swine fever (ASF), a highly contagious and lethal disease, poses a tremendous threat and burden to the swine industry worldwide. Lack of available vaccines or treatments leaves rapid diagnosis as the key tool to control the disease. Quantum dots (QDs) are unique fluorescent semiconductor nanoparticles, highly versatile for biological applications. In this study, we developed a quantum dots-based fluorescent immunochromatographic assay (QDs-FICA) using CD2v as the diagnosis antigen to detect ASFV antibodies. The titre of the test strip was 1 : 5·12 × 105 . In addition, the strip was highly specific to anti-ASFV serum and had no cross-reaction with CSFV, PPV, PRRSV, PCV-2, PRV and FMDV. Moreover, a comparative test of 71 clinical samples showed that the coincidence rate was 85·92% between the test strip and the commercial ELISA kit (coated with p30, p62 and p72). The QDs-FICA can be used to detect ASFV antibodies, which is meaningful for the surveillance, control and purification of ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Quantum Dots , African Swine Fever/diagnosis , African Swine Fever/prevention & control , Animals , Diagnosis, Differential , Immunoassay , Swine
8.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1884205

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogenic agent leading to COVID-19. Due to high speed of transmission and mutation rates, universal diagnosis and appropriate prevention are still urgently needed. The nucleocapsid protein of SARS-CoV-2 is considered more conserved than spike proteins and is abundant during the virus' life cycle, making it suitable for diagnostic applications. Here, we designed and developed a fluorescent immunochromatography assay (FICA) for the rapid detection of SARS-CoV-2-specific antibodies using ZnCdSe/ZnS QDs-conjugated nucleocapsid (N) proteins as probes. The nucleocapsid protein was expressed in E.coli and purified via Ni-NTA affinity chromatography with considerable concentration (0.762 mg/mL) and a purity of more than 90%, which could bind to specific antibodies and the complex could be captured by Staphylococcal protein A (SPA) with fluorescence displayed. After the optimization of coupling and detecting conditions, the limit of detection was determined to be 1:1.024 × 105 with an IgG concentration of 48.84 ng/mL with good specificity shown to antibodies against other zoonotic coronaviruses and respiratory infection-related viruses (n = 5). The universal fluorescent immunochromatography assay simplified operation processes in one step, which could be used for the point of care detection of SARS-CoV-2-specific antibodies. Moreover, it was also considered as an efficient tool for the serological screening of potential susceptible animals and for monitoring the expansion of virus host ranges.


Subject(s)
COVID-19 , Quantum Dots , Animals , Antibodies, Viral , COVID-19/diagnosis , Chromatography, Affinity , Nucleocapsid Proteins , SARS-CoV-2 , Sensitivity and Specificity
9.
Appl Microbiol Biotechnol ; 106(3): 1151-1164, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1626255

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease (COVID-19). It is confirmed that nucleocapsid (N) protein is closely related to viral pathogenesis, modulation of host immune response, RNA transcription, and replication and virus packaging. Therefore, the N protein is a preponderant antigen target for virus detection. The codon-optimized N gene was designed according to the encoding characteristics of insect cells and inserted into pFastBacTM1 vector with 6 × His-tag-fused N protein for expression in insect sf21 cells. Six anti-N mAbs (4G3, 5B3, 12B6, 18C7-A2, 21H10-A3, 21H10-E9) were prepared by recombinant N protein. The mAbs showed high titers, antibody affinity, and reactivity with the SARS-CoV-2 N protein. Then, fourteen overlapped peptides that covered the intact N protein were synthesized (N1-N14). Peptide N14 was identified as the main linear B-cell epitope region via peptide-ELISA and dot-blot assay, and this region was truncated gradually until mapping the peptide 401-DFSKQLQQ-408. Simultaneously, compared with the sequence of variants of concern (VOCs) and variants of interest (VOIs) strains among the several countries, epitope 401-DFSKQLQQ-408 is very conservative among them. The findings provide new guidance for the design and detection of COVID-19 targets. KEY POINTS: • The N protein was optimized according to the insect cell codon preference and was highly expressed. • The monoclonal antibodies prepared in this study were shown high antibody titers and high affinity. • Monoclonal antibodies were used to map the epitope 401-408 amino acids of N protein for the first time in this study.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Antibodies, Monoclonal , Antibodies, Viral , Epitope Mapping , Epitopes, B-Lymphocyte , Humans , Nucleocapsid Proteins/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
10.
PeerJ ; 9: e12459, 2021.
Article in English | MEDLINE | ID: covidwho-1534525

ABSTRACT

BACKGROUND: Frontline clinicians working in emergency departments (ED) were at disportionate risk of workplace violence (WPV). We investigated the prevalence of WPV and its relationship with quality of life (QOL) in this group of health professionals in China during the COVID-19 pandemic. METHODS: A cross-sectional, online study was conducted. The nine-item Workplace Violence Scale measured WPV. RESULTS: A total of 1,103 ED clinicians participated in this study. The overall prevalence of WPV against ED clinicians was 29.2% (95% CI [26.5%-31.9%]). Having family/friends/colleagues infected with COVID-19 (Odds Ratio (OR) = 1.82, P = 0.01), current smoking (OR = 2.98, P < 0.01) and severity of anxiety symptoms (OR = 1.08, P < 0.01) were independently and positively associated with WPV, while working in emergency intensive care units (OR = 0.45, P < 0.01) was negatively associated with WPV. After controlling for covariates, clinicians experiencing WPV had a lower global QOL compared to those without (F(1, 1103) = 10.9,P < 0.01). CONCLUSIONS: Prevalence of workplace violence against ED clinicians was common in China during the COVID-19 pandemic. Due to the negative impact of WPV on QOL and quality of care, timely preventive measures should be undertaken for ED clinicians.

11.
Front Immunol ; 12: 707977, 2021.
Article in English | MEDLINE | ID: covidwho-1457901

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 is a huge public health crisis for the globe. The receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein plays a vital role in viral infection and serves as a major target for developing neutralizing antibodies. In this study, the antibody response to the RBD of SARS-CoV-2 S protein was analyzed by a panel of sera from animals immunized with RBD-based antigens and four linear B-cell epitope peptides (R345, R405, R450 and R465) were revealed. The immunogenicity of three immunodominant peptides (R345, R405, R465) was further accessed by peptide immunization in mice, and all of them could induced potent antibody response to SARS-CoV-2 S protein, indicating that the three determinants in the RBD were immunogenic. We further generated and characterized monoclonal antibodies (15G9, 12C10 and 10D2) binding to these epitope peptides, and finely mapped the three immunodominant epitopes using the corresponding antibodies. Neutralization assays showed that all three monoclonal antibodies had neutralization activity. Results from IFA and western blotting showed that 12C10 was a cross-reactive antibody against both of SARS-CoV-2 and SARS-CoV. Results from conservative and structural analysis showed that 350VYAWN354 was a highly conserved epitope and exposed on the surface of SARS-CoV-2 S trimer, whereas 473YQAGSTP479 located in the receptor binding motif (RBM) was variable among different SARS-CoV-2 strains. 407VRQIAP412 was a highly conserved, but cryptic epitope shared between SARS-CoV-2 and SARS-CoV. These findings provide important information for understanding the humoral antibody response to the RBD of SARS-CoV-2 S protein and may facilitate further efforts to design SARS-CoV-2 vaccines and the target of COVID-19 diagnostic.


Subject(s)
B-Lymphocytes/immunology , Epitopes, B-Lymphocyte/metabolism , Peptides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Motifs/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines , Conserved Sequence/genetics , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , HEK293 Cells , Humans , Immunity, Humoral , Peptides/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
12.
Zhongguo Huanjing Kexue = China Environmental Science ; 41(7):3088, 2021.
Article in English | ProQuest Central | ID: covidwho-1342758

ABSTRACT

In order to investigate the impact of COVID-19 lockdown on air quality in Nanjing, the air pollutants observed from January 25 to February 10, in 2020(COVID-19 lockdown period) in Nanjing and its surrounding cities was analyzed. During the lockdown period with poor atmospheric diffusion conditions, the concentrations of PM2.5, PM10, NO2, SO2, and CO decreased obviously, with the value of 36, 44, 5, 22μg/m3 and 1.1 mg/m3, whereasO3 increased by 4%. The net effectiveness of the emission reduction measures was calculated through comparisons of concentrations of air pollutants between and before COVID in the similar meteorological conditions. Concentrations of PM2.5, PM10, SO2, NO2 and CO decreased by 41.7%, 45.3%, 14.3%, 43.5% and 18.2%, respectively, whereasO3 increased by 4.8%. Compared to capital cities of the Yangtze River Delta in the same period, the largest decline of SO2 and the medium decline of the other pollutions were appeared in Nanjing. The diurnal variation concentration of PM2.5 and PM10 changed from double peak to single peak, due to the disappearance of nighttime sub-peak of particle. The concentration ofO3 increased significantly at night, which was resulted from that sharp reduction of traffic sources weaken the titration reaction of NO toO3. The peak ofO3 during the daytime depended on the variation of the ratio of VOCs to NOx due to the emission control.

13.
Front Immunol ; 12: 635677, 2021.
Article in English | MEDLINE | ID: covidwho-1156121

ABSTRACT

The outbreak and worldwide pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have a significant impact on global economy and human health. In order to reduce the disease spread, 16 monoclonal antibodies (McAbs) again SARS-CoV-2 were generated by immunized mice with the spike protein receptor binding domain (RBD), which was expressed in Chinese hamster ovary cell (CHO). A colloidal gold-based immunochromatographic strip was developed with two McAbs to detect SARS-CoV-2 spike protein, which can play a potential role in monitoring vaccine quality. The strip is highly specific, detecting only SARS-CoV-2 spike protein, and does not show any non-specific reactions with syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and other coronavirus and influenza viruses. The strip detected subunit vaccine in our laboratory with a detection limit of spike protein of 62.5 ng/mL. This strip provides an effective method in monitoring vaccine quality by detecting the antigen content of spike protein.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/instrumentation , COVID-19/diagnosis , Gold Colloid , Immunoassay/instrumentation , Reagent Strips , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Monoclonal/immunology , Antibody Specificity , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/virology , Humans , Limit of Detection , Predictive Value of Tests , Reproducibility of Results , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
14.
J Affect Disord ; 276: 312-315, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-653701

ABSTRACT

BACKGROUND: Frontline medical staff exposed to the novel coronavirus disease (COVID-19) could be psychologically and mentally exhausted. This study examined the prevalence of depressive symptoms (depression hereafter) and their correlates and the association between depression and quality of life (QOL) in Emergency Department (ED) nurses during the COVID-19 pandemic in China. METHODS: This national, cross-sectional online survey was conducted between March 15 and March 20, 2020 in China. Depression and QOL were measured using the 9-item Patient Health Questionnaire, and the World Health Organization Quality of Life Questionnaire-Brief Version, respectively. RESULTS: The overall prevalence of depression in 1103 ED nurses was 43.61% (95% CI=40.68-46.54%). Multiple logistic regression analysis revealed that working in tertiary hospitals (OR=1.647, P=0.009), direct patient care of COVID-19 patients (OR=1.421, P=0.018), and current smokers (OR=3.843, P<0.001) were significantly associated with depression. After controlling for covariates, nurses with depression had an overall lower QOL compared to those without (F(1,1103)=423.83, P<0.001). CONCLUSION: Depression was common among ED nurses during the COVID-19 pandemic. Considering the negative impact of depression on quality of patient care and nurses' QOL, a heightened awareness of, and early treatment for depression for frontline ED nurses should be provided.


Subject(s)
Betacoronavirus , Coronavirus Infections , Depression/epidemiology , Nurses , Pandemics , Pneumonia, Viral , Adult , COVID-19 , Cross-Sectional Studies , Disease Outbreaks , Emergency Service, Hospital , Female , Humans , Male , Nurses/psychology , Prevalence , Quality of Life , SARS-CoV-2 , Surveys and Questionnaires
15.
Am J Transplant ; 20(7): 1916-1921, 2020 07.
Article in English | MEDLINE | ID: covidwho-210165

ABSTRACT

Over 1 000 000 cases of coronavirus disease 2019 (COVID-19) have been confirmed since the worldwide outbreak began. Not enough data on infected solid organ transplant (SOT) recipients are available, especially data about the management of immunosuppressants. We report two cases of COVID-19 in two transplant recipients, with different treatments and prognoses. The first patient received liver transplantation due to hepatitis B virus-related hepatocellular carcinoma and was confirmed to have COVID-19 9 days later. Following a treatment regimen consisting of discontinued immunosuppressant use and low-dose methylprednisolone-based therapy, the patient developed acute rejection but eventually recovered. The other patient had undergone a renal transplant from a living-related donor 17 years ago, and was admitted to the hospital because of persistent fever. This patient was also diagnosed with COVID-19. His treatment regimen consisted of reduced immunosuppressant use. No signs of rejection were observed during the regimen. In the end, the patient successfully recovered from COVID-19. These effectively treated cases can provide a basis for immunosuppressant management of COVID-19-positive SOT recipients.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/therapy , Immunosuppressive Agents/therapeutic use , Organ Transplantation , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Transplant Recipients , Adult , Betacoronavirus , COVID-19 , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/surgery , Hepatitis B/complications , Hepatitis B/surgery , Hepatitis B virus , Humans , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/surgery , Kidney Transplantation , Liver Neoplasms/complications , Liver Neoplasms/surgery , Liver Transplantation , Male , Methylprednisolone/administration & dosage , Middle Aged , Pandemics , Prognosis , SARS-CoV-2 , Treatment Outcome
16.
Cytokine Growth Factor Rev ; 53: 38-42, 2020 06.
Article in English | MEDLINE | ID: covidwho-116329

ABSTRACT

Clinical intervention in patients with corona virus disease 2019 (COVID-19) has demonstrated a strong upregulation of cytokine production in patients who are critically ill with SARS-CoV2-induced pneumonia. In a retrospective study of 41 patients with COVID-19, most patients with SARS-CoV-2 infection developed mild symptoms, whereas some patients later developed aggravated disease symptoms, and eventually passed away because of multiple organ dysfunction syndrome (MODS), as a consequence of a severe cytokine storm. Guidelines for the diagnosis and treatment of SARS-CoV-2 infected pneumonia were first published January 30th, 2020; these guidelines recommended for the first time that cytokine monitoring should be applied in severely ill patients to reduce pneumonia related mortality. The cytokine storm observed in COVID-19 illness is also an important component of mortality in other viral diseases, including SARS, MERS and influenza. In view of the severe morbidity and mortality of COVID-19 pneumonia, we review the current understanding of treatment of human coronavirus infections from the perspective of a dysregulated cytokine and immune response.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Cytokine Release Syndrome/pathology , Cytokines/blood , Multiple Organ Failure/mortality , Pneumonia, Viral/pathology , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal/therapeutic use , COVID-19 , Continuous Renal Replacement Therapy/methods , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Cytokine Release Syndrome/drug therapy , Cytokines/biosynthesis , Female , Humans , Interferon-alpha/therapeutic use , Male , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Polyethylene Glycols/therapeutic use , Recombinant Proteins/therapeutic use , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL